EmBootKit User Guide
Edit Files

Edit Files

Contents

1 HOW 0 St . L 2

2. S CrBEN COMIENES | . L . . 3

S HOW O L . 4
S EXIt IO . . 4
3. 2. 8aVe Ml . L 5
3.3 NaVIgat ON | L . . 6
3.4. Text insertion and remoVal 7
3.5, UNdO Changes 8
3.6. Change enCodiNg o 12
3.7. Delete, copy or move atext range, 15
3.7. Delete, copy or move a rectangular DlOCK 24

Emergency Boot Kit User Guide
Edit Files
1. How to start

1. How to start

To edit a file, set cursor over it using 1 and | keys or
by clicking it with left mouse button. Then press the

F4 key.

_test

Bin

Devices
KernelModules

_test Folder 05,1108 10:55

UTF-8-test.txt £0334 051108 10:55

Name

empty.txt
initZ
one . txt
UTF-16-t
U

10 11 12

Emergency Boot Kit User Guide

Edit Files
2. Screen contents

2. Screen contents

Topmost line of the editor contains:

e o o o

name of file being edited

asterisk (*), if file was changed since last save
encoding type

number of current line, slash, total number of
lines in current file

number of current column

TF-8 decoder capability and stress test

arkus Kuhn <http: /e .cl.cam.ac.uks mgk25/> — Z2003-02-19

Thisz test file can help you examine, how your UTF-8 decoder handles
arious types of correct, malformed, or otherwise interesting UTF-8
sequences. This file is not meant to be a conformance test. It does
not prescribes any particular outcome and therefore there is no way to
"pass"” or “"fail” this test file, even though the texts suggests a
preferable decoder behaviour at some places. The aim is instead to
help you think about and test the behaviour of your UTF-8 on a
cystematic collection of unusual inputs. Experience so far suggests
hat most first-time authors of UTF-8 decoders find at least one
cerious problem in their decoder by using this file.

The test lines below cover boundary conditioms, malformed UTF-8
lsequences as well as correctly encoded UTF-8 sequences of Unicode code
points that should never occur in a correct UTF-8 file.

ficcording to IS0 10646-1:2000, sections D.7 and 2.3c, a device
receiving UTF—8 shall interpret a “malformed sequence in the same way
hat it interprets a character that is outside the adopted subset" and
"characters that are not within the adopted subset shall be indicated
o the user” by a receiving device. A gquite commonly used approach in
TF-8 decoders is to replace any malformed UTF-8 sequence by a
replacement character (U+FFFD), which looks a bit like an inverted
uestion mark, or a similar symbol. It might be a good idea to
isually distinguish a malformed UTF-8 sequence from a correctly
encoded Unicode character that is just not available in the current
font but otherwise fully legal, even though IS0 10646-1 doesn’t
andate this. In any case, just ignoring malformed sequences or
mavailable characters does not conform to IS0 10646, will make
ebugging more difficult, and can lead to user confusion.

1 2 3 4 5 b s g

Emergency Boot Kit User Guide

Edit Files
3. How to
3.1. Exit editor

3. How to
3.1. Exit editor

To exit editor, press F10 or Esc key.

If file was changed, you will be prompted to either
Saveit, to exit without saving (Don’t Save) or to
Continue Editing (editor will not be closed).

TF-8 decoder capability and stress test

arkus Kuhn <http: /e .cl.cam.ac.uks mgk25/> — Z2003-02-19

Thisz test file can help you examine, how your UTF-8 decoder handles
arious types of correct, malformed, or otherwise interesting UTF-8
sequences. This file is not meant to be a conformance test. It does
not prescribes any particular outcome and therefore there is no way to
"pass"” or “"fail” this test file, even though the texts suggests a
preferable decoder behaviour at some places. The aim is instead to
help you think about and test the behaviour of your UTF-8 on a
ystematic cullectlun of unusual

hat it 1nterprets a character that is outside the adopted subset" and
"characters that are not within the adopted subset shall be indicated
o the user” by a receiving device. A gquite commonly used approach in
TF-8 decoders is to replace any malformed UTF-8 sequence by a
replacement character (U+FFFD), which looks a bit like an inverted
uestion mark, or a similar symbol. It might be a good idea to
isually distinguish a malformed UTF-8 sequence from a correctly
encoded Unicode character that is just not available in the current
font but otherwise fully legal, even though IS0 10646-1 doesn’t
andate this. In any case, just ignoring malformed sequences or
mavailable characters does not conform to IS0 10646, will make
ebugging more difficult, and can lead to user confusion.

1 2 3 4 5 b 7 g

Emergency Boot Kit User Guide

Edit Files
3. How to
3.2. Save file

3.2. Save file

To save a file, press F2.

TF-8 decoder capability and stress test

arkus Kuhn <http: /e .cl.cam.ac.uks mgk25/> — Z2003-02-19

Thisz test file can help you examine, how your UTF-8 decoder handles
arious types of correct, malformed, or otherwise interesting UTF-8
sequences. This file is not meant to be a conformance test. It does
not prescribes any particular outcome and therefore there is no way to
"pass"” or “"fail” this test file, even though the texts suggests a
preferable decoder behaviour at some places. The aim is instead to
help you think about and test the behaviour of your UTF-8 on a
cystematic collection of unusual inputs. Experience so far suggests
hat most first-time authors of UTF-8 decoders find at least one
cerious problem in their decoder by using this file.

The test lines below cover boundary conditioms, malformed UTF-8
lsequences as well as correctly encoded UTF-8 sequences of Unicode code
points that should never occur in a correct UTF-8 file.

ficcording to IS0 10646-1:2000, sections D.7 and 2.3c, a device
receiving UTF—8 shall interpret a “malformed sequence in the same way
hat it interprets a character that is outside the adopted subset" and
"characters that are not within the adopted subset shall be indicated
o the user” by a receiving device. A gquite commonly used approach in
TF-8 decoders is to replace any malformed UTF-8 sequence by a
replacement character (U+FFFD), which looks a bit like an inverted
uestion mark, or a similar symbol. It might be a good idea to
isually distinguish a malformed UTF-8 sequence from a correctly
encoded Unicode character that is just not available in the current
font but otherwise fully legal, even though IS0 10646-1 doesn’t
andate this. In any case, just ignoring malformed sequences or
mavailable characters does not conform to IS0 10646, will make
ebugging more difficult, and can lead to user confusion.

1 s 4 5 6 ? 8

Emergency Boot Kit User Guide
Edit Files

3. How to

3.3. Navigation

3.3. Navigation

To move text cursor within a file, use the following keys:

Operation Key
Move cursor to the previous line)
Move cursor to the next line !
Move cursor to the previous character —
Move cursor to the next character —
Move cursor to the start of line Home
Move cursor to the end of line End
Move cursor to the first line in file Ctri+PageUp or
Ctrl+Home

+
Move cursor to the last line in file Ctrl+PageDown or

Ctri+End
Scroll view to the next page Page Up
Scroll view to the previous page Page Down

Emergency Boot Kit User Guide
Edit Files

3. How to

3.4. Text insertion and removal

3.4. Text insertion and removal

To insert text, use letter keys, numeric keys and other usual keys.

To start a new line, use Enter key.

To delete text, use the following keys:

Operation Key
Delete character under the cursor or join the next line Delete
Delete character before the cursor or join to the previous line Backspace
Delete the whole current line Ctri+Y

Emergency Boot Kit User Guide

Edit Files
3. How to
3.5. Undo changes

3.5. Undo changes

To undo last change, press Ctrl+Z or
Alt+Backspace.

To redo last change, press Ctri+Shift+Z.

Example: cursor is pointing to line 4.

TF-8 decoder capability and stress test

kus Kuhn <http:/suwu.cl.cam.ac.uk/ mgkZ5/> — 2003-02-19

Thisz test file can help you examine, how your UTF-8 decoder handles
arious types of correct, malformed, or otherwise interesting UTF-8
sequences. This file is not meant to be a conformance test. It does
not prescribes any particular outcome and therefore there is no way to
"pass"” or “"fail” this test file, even though the texts suggests a
preferable decoder behaviour at some places. The aim is instead to
help you think about and test the behaviour of your UTF-8 on a
cystematic collection of unusual inputs. Experience so far suggests
hat most first-time authors of UTF-8 decoders find at least one
cerious problem in their decoder by using this file.

The test lines below cover boundary conditioms, malformed UTF-8
lsequences as well as correctly encoded UTF-8 sequences of Unicode code
points that should never occur in a correct UTF-8 file.

ficcording to IS0 10646-1:2000, sections D.7 and 2.3c, a device
receiving UTF—8 shall interpret a “malformed sequence in the same way
hat it interprets a character that is outside the adopted subset" and
"characters that are not within the adopted subset shall be indicated
o the user” by a receiving device. A gquite commonly used approach in
TF-8 decoders is to replace any malformed UTF-8 sequence by a
replacement character (U+FFFD), which looks a bit like an inverted
uestion mark, or a similar symbol. It might be a good idea to
isually distinguish a malformed UTF-8 sequence from a correctly
encoded Unicode character that is just not available in the current
font but otherwise fully legal, even though IS0 10646-1 doesn’t
andate this. In any case, just ignoring malformed sequences or
mavailable characters does not conform to IS0 10646, will make
ebugging more difficult, and can lead to user confusion.

1 2 3 4 5 b s g

Emergency Boot Kit User Guide

Edit Files
3. How to
3.5. Undo changes

Then you have deleted this line by pressing Ctri+Y.

TF-8 decoder capability and stress test

Thisz test file can help you examine, how your UTF-8 decoder handles
arious types of correct, malformed, or otherwise interesting UTF-8
sequences. This file is not meant to be a conformance test. It does
not prescribes any particular outcome and therefore there iz no way to
"pass" or “"fail" this test file, even though the texts suggests a
preferable decoder behaviour at some places. The aim is instead to
help you think about and test the behaviour of your UTF-8 on a
cystematic collection of unusual inputs. Experience so far suggests
hat most first-time authors of UTF-8 decoders find at least one
cerious problem in their decoder by using this file.

The test lines below cover boundary conditioms, malformed UTF-8
sequences as well as correctly encoded UTF-8 sequences of Unicode code
points that should wnever occur in a correct UTF-8B file.

ficcording to IS0 10646-1:2000, sections D.7 and 2.3c, a device
receiving UTF—8 shall interpret a “malformed sequence in the same way
hat it interprets a character that is outside the adopted subset” and
"characters that are not within the adopted subset shall be indicated
o the user” by a receiving device. A gquite commonly used approach in
TF-8 decoders is to replace any malformed UTF-8 sequence by a
replacement character (U+FFFD), which looks a bit like an inverted
uestion mark, or a similar symbol. It might be a good idea to
isually distinguish a malformed UTF-8 sequence from a correctly
encoded Unicode character that is just not available in the current
font but otherwise fully legal, even though IS0 10646-1 doesn’t
andate this. In any case, just ignoring malformed sequences or
mavailable characters does not conform to ISD 10646, will make
ebugging more difficult, and can lead to user confusion.

lease check, whether a malformed UTF-8 sequence is (1) represented at
2 3 4 5 6 7 8 9

10

Emergency Boot Kit User Guide

Edit Files
3. How to
3.5. Undo changes

To undo last change (line deleting in this example),
press Ctri+Z.

TF-8 decoder capability and stress test

arkus Kuhn <http: /7w .cl.cam.ac.uks mgk25/> — Z003-02-19

Thisz test file can help you examine, how your UTF-8 decoder handles
arious types of correct, malformed, or otherwise interesting UTF-8
sequences. This file is not meant to be a conformance test. It does
not prescribes any particular outcome and therefore there is no way to
"pass"” or “"fail” this test file, even though the texts suggests a
preferable decoder behaviour at some places. The aim is instead to
help you think about and test the behaviour of your UTF-8 on a
cystematic collection of unusual inputs. Experience so far suggests
hat most first-time authors of UTF-8 decoders find at least one
cerious problem in their decoder by using this file.

The test lines below cover boundary conditioms, malformed UTF-8
lsequences as well as correctly encoded UTF-8 sequences of Unicode code
points that should never occur in a correct UTF-8 file.

ficcording to IS0 10646-1:2000, sections D.7 and 2.3c, a device
receiving UTF—8 shall interpret a “malformed sequence in the same way
hat it interprets a character that is outside the adopted subset" and
"characters that are not within the adopted subset shall be indicated
o the user” by a receiving device. A gquite commonly used approach in
TF-8 decoders is to replace any malformed UTF-8 sequence by a
replacement character (U+FFFD), which looks a bit like an inverted
uestion mark, or a similar symbol. It might be a good idea to
isually distinguish a malformed UTF-8 sequence from a correctly
encoded Unicode character that is just not available in the current
font but otherwise fully legal, even though IS0 10646-1 doesn’t
andate this. In any case, just ignoring malformed sequences or
mavailable characters does not conform to IS0 10646, will make
ebugging more difficult, and can lead to user confusion.

1 2 3 4 5 b s g

10

Emergency Boot Kit User Guide

Edit Files
3. How to
3.5. Undo changes

To redo last change (e.g. delete line again), press
Ctrl+Shift+Z.

TF-8 decoder capability and stress test

Thisz test file can help you examine, how your UTF-8 decoder handles
arious types of correct, malformed, or otherwise interesting UTF-8
sequences. This file is not meant to be a conformance test. It does
not prescribes any particular outcome and therefore there iz no way to
"pass" or “"fail" this test file, even though the texts suggests a
preferable decoder behaviour at some places. The aim is instead to
help you think about and test the behaviour of your UTF-8 on a
cystematic collection of unusual inputs. Experience so far suggests
hat most first-time authors of UTF-8 decoders find at least one
cerious problem in their decoder by using this file.

The test lines below cover boundary conditioms, malformed UTF-8
sequences as well as correctly encoded UTF-8 sequences of Unicode code
points that should wnever occur in a correct UTF-8B file.

ficcording to IS0 10646-1:2000, sections D.7 and 2.3c, a device
receiving UTF—8 shall interpret a “malformed sequence in the same way
hat it interprets a character that is outside the adopted subset” and
"characters that are not within the adopted subset shall be indicated
o the user” by a receiving device. A gquite commonly used approach in
TF-8 decoders is to replace any malformed UTF-8 sequence by a
replacement character (U+FFFD), which looks a bit like an inverted
uestion mark, or a similar symbol. It might be a good idea to
isually distinguish a malformed UTF-8 sequence from a correctly
encoded Unicode character that is just not available in the current
font but otherwise fully legal, even though IS0 10646-1 doesn’t
andate this. In any case, just ignoring malformed sequences or
mavailable characters does not conform to ISD 10646, will make
ebugging more difficult, and can lead to user confusion.

lease check, whether a malformed UTF-8 sequence is (1) represented at
2 3 4 5 6 7 8 9

10

11

Emergency Boot Kit User Guide
Edit Files

3. How to

3.6. Change encoding

3.6. Change encoding

To change encoding, press the F12 key.

TooloEMOEroEToETOETOETOErOEroErOErOETOETOEToETOErOETOEroETOET Ol oEToEToEToEToEroEToEToETOETOETOET D

Toe
Toe
Toe
Toe
T'oe
T'oe
T'oe
T'oe
T'i»
Toe
Toe
Toe
Toe
Toe
T'oe

To=

3 T'Cijsinglel'CO and TCfdoublel'C¥ quotes Tox

Curly apostrophes: T'CEWelCluve been £;§3F§¥ oz
Latin-1 apostrophe and accents: 'T1F?Rran
I'Clideutschel Cij Fgﬁﬂnffﬂhrungszeicheg?gﬁ oz
Ica, Igi, Iy, I'ca, 3rCa4, I'Ca, Téﬂg?TS, lTaa, rcge
ASCIT safety test: 1111, 00D, 8B ru?ﬁe
ToilreCroCloCToCToCTaCTaCToClaCT O

3 the euro symbol: Toé 14.95 T'é4 Toe Tox

6CT6CT6CToCTECT6CToCTaCTHCT b

ol eErHErSETSETOETOETaEr SEr O ErSEr e OET oETaET o Er O Er M oEr dE oMok o E o ErEr ET HErSEr ETOETOETSED)

Greek (in Polytomic):

The Greek anthem:

J_A
—aﬂ

JlJlJ.]l.

J.AJI

Jlllj] 1 i.ei..l.un_e i} j] _i_:ij] L JJ.-JI
G

—e—uB

Ry F
i ?*‘i“ P JP_ il
rRYE R mE atuBt iHnl e jlrqa.
; l" Ij|"|| R |3t
B €]

it {4 4ji HI “
i BJHII-IIJm% —ﬁ1h¥ =i

From a speech of Demosthenes in the 4th century BC:

ﬁfﬂ"t‘-*gﬂ"il VESARY Gy Mib g rataty B“n?iﬁihiﬁl I13H1HHH1i"g‘”‘*ﬁﬂll1i=l b B"“ BJa |

5

12

Emergency Boot Kit User Guide
Edit Files

3. How to

3.6. Change encoding

A popup window with a list of all encodings will be
shown.

Choose new encoding using 1 and | keys followed
by Enter; or left-click it with a mouse.

Greek (in Polytomic): Turkish (CP-1254)

To6rHESETSETOETOET OET OET 6ET SETOET SETSETOETOETOET OET 0ET 6ET SETOET SETSETOETSETSETGET OET 6ETOETOETSET S
Tox To=

Tox 3 T'Cijsinglel'CO and TCfdoublel'C¥ quotes Tox
Tox To=

oz Curly apostrophes: T'CEWelClue been herelC¥ T'oe
Tox

oz Latin-1 apostro Encoding

oz English (CP-437)

oz I'Clideutschel Cij Greek (CP-737)

Toz Western European (CP-858)
Tox Ica, Ici, TG Cyrillic (CP-866)

Tox Eastern European (CP-852)
Tox ASCIT safety te Turkish (CP-857)

Tox
Tox 3 the euro symbol Eastern European (CP-1250)
o Cyrillic (CP-1251) R
IolrsErsErSETGETGETGETGET Western European (CP-1252) [OETOETOETOE D
Greek (CP-1253)

Hebrew (CP-1255)
The Greek anthem: Arabic (CP-1256)
Baltic (CP-1257)
f,ﬁﬂﬂﬁ L

R1® = IInicode (UTF-8)

éan “ i *e]—Lun —16 Big Endian)
ﬂ"“

Az 4 Umicode (UTF-16 Little Endian)
Unicode (UTF-16 Big Endian + 1)
Unicode (UTF-16 Little Endian + 1)

From a speech of Demosthenes in the 4th century BC:

ﬁfﬂ"t‘-*gﬂ"il YEaR Y :-iig"n*ﬁ i B“n?iﬁihiﬁl I13H1HHH1i"g‘”‘*ﬁﬂll1i=l ik B"“ BJa i rl*uiH-e o

13

Emergency Boot Kit User Guide
Edit Files

3. How to

3.6. Change encoding

Screenshot shows the same file after encoding
changed.

‘single’ and “double” guotes

Curly apostrophes: “We’ve been here”
Latin-1 apostrophe and accents: '
,deutsche’ _Anfithrungszeichen”

o1 *, 34, -, SBesh, M,

ASCII safety test: 1111, ©0D, 8B

the euro symbol: ' 14.95 € '

Greek (in Polytomic):
The Greek anthem:
GUO TAY KOUM
fiv Tpopepry,
o grwpile imwa TV Gym

nmoll ps Bie pecpiel T 6.

A ’_tﬁ KOKKeEAR ByoApsvn
tiv EAAfvuwv T (ept

From a speech of Demosthenes in the 4th century BC:

O0xi Te(Th TeporTeTe] poL FLEVTKELY, §
2 3 4 5

14

Emergency Boot Kit User Guide

Edit Files

3. How to

3.7. Delete, copy or move a text range

3.7. Delete, copy or move a text range

Text range is a continuous part of text which can be a substring or occupy multiple strings, either complete or incomplete.

Text range Not a text range
Code page Code page
based on th
following the follow
modifications modifications

Before text range can be deleted, copied or moved, it must be selected.

15

Emergency Boot Kit User Guide

Edit Files
3. How to

3.7. Delete, copy or move a text range

Select a text range

To select a text range, use following keys:

Operation

Key

Select text upward from the
cursor position

Shift+1

Select text downward from
the cursor position

Shift+|

Select text leftward from the

the end of file

cursor position Shift+—

ffrl:cc): :)e()x;i[iig:tward from the Shift+_

the start of current e | Shift#Home
the ond of current ne. | Shift+End
tsrgesct;f);tf 1;r”%m the cursorto | oy ario i oo
Select text from the cursor to Ctrl+Shift+End

Screenshot shows an example of selected text

range.

his test file can help you examine, how your UTF-8 decoder handles
arious types of correct, malformed, or otherwise interesting UTF-8
Eequences. This file is not meant to be a conformance test. It does
not prescribes any particular outcome and therefore there is no way to
'‘pass” or "fail” this test file, even though the texts suggests a
referable decoder behaviour at some places. The aim is instead to
help you think about and test the behaviour of your UTF-8 on a
Eystematic collection of wnusual inputs. Experience so far suggests
hat most first-time authors of UTF-8 decoders find at least one
Eerious problem in their decoder by using this file.

.1 an .dc, a device
eceiving UTF-8 shall interpret a "malformed sequence in the same way

hat it interprets a character that is outside the adopted subset"” and
‘characters that are not within the adopted subset shall be indicated
o the user” by a receiving device. A quite commonly used approach in
TF-8 decoders is to replace any malformed UTF-8 sequence by a
eplacement character (U+FFFD), which looks a bit like an inverted
uestion mark, or a similar symbol. It might be a good idea to
isually distinguish a malformed UTF-8 sequence from a correctly
encoded Unicode character that is just not available in the current
font but otherwise fully legal, even though IS0 10646-1 doesn’t
andate this. In any case, just ignoring malformed sequences or
mavailable characters does not conform to IS0 10646, will make
ebugging more difficult, and can lead to user confusion.

leaze check, whether a malformed UTF-8 sequence is (1) represented at
11, (2) represented by exactly one single replacement character (or
pguivalent signal), and (3) the following guotation mark after an
illegal UTF—8 sequence is correctly displayed, i.e. proper

? 8

16

Emergency Boot Kit User Guide

Edit Files
3. How to

3.7. Delete, copy or move a text range

Delete a text range

To delete a text range, select it (see above) and
press Ctri+D.

Screenshot shows location of recently deleted text
range.

This test file can help you examine, how your UTF-8 decoder handles
arious types of correct, malformed, or otherwise interesting UTF-8
cequences. This file is not meant to be a conformance test. It does
not prescribes any particular outcome and therefore there iz no way to
"pass" or “"fail"” this test file, even though the texts suggests a
preferable decoder behaviour at some places. The aim iz instead to
help you think about and test the behaviour of your UTF-8 on a
systematic collection of unusual inputs. Experience so far suggests
hat most first-time authors of UTF-8 decoders find at least one
cerious problem in their decoder by using this file.

ficcording to IS0 10646-1:2000, sections D.7 and 2.3c, a device
receiving UTF-8 shall interpret a "malformed sequence in the same way
hat it interprets a character that is outside the adopted subset" and
"characters that are not within the adopted subset shall be indicated
o the user” by a receiving device. A gquite commonly used approach in
TF-8 decoders is to replace any malformed UTF-8 sequence by a
replacement character (U+FFFD), which looks a bit like an inverted
uestion mark, or a similar symbol. It might be a good idea to
isually distinguish a malformed UTF-8 sequence from a correctly
encoded Unicode character that is just not available in the current
font but otherwise fully legal, even though IS0 10646-1 doesn’t
andate this. In any case, just ignoring malformed segquences or
mavailable characters does not conform to IS0 10646, will make
ebugging more difficult, and can lead to user confusion.

Please check, whether a malformed UTF-8 sequence is (1) represented at
11, (2) represented by exactly one single replacement character (or
equivalent signal), and (3) the following gquotation mark after an
illegal UTF-8 sequence is correctly displayed, i.e. proper
resynchronization takes place immageately after any malformed
<equence. This file says "THE END" in the last line, so if you don’t
see that, your decoder crashed somehow before, which should always be
ause for concern.
2 3

17

Emergency Boot Kit User Guide

Edit Files
3. How to

3.7. Delete, copy or move a text range

Copy text range

Before text range can be copied, it must be selected
(see above).

After text range is selected, press Ctrl+C or
Ctri+Insert to copy it to the clipboard.

his test file can help you examine, how your UTF-8 decoder handles
arious types of correct, malformed, or otherwise interesting UTF-8
Eequences. This file is not meant to be a conformance test. It does
not prescribes any particular outcome and therefore there is no way to
'‘pass” or "fail” this test file, even though the texts suggests a
referable decoder behaviour at some places. The aim is instead to
help you think about and test the behaviour of your UTF-8 on a
Eystematic collection of wunusual inputs. Experience so far suggests
hat most first-time authors of UTF-8 decoders find at least one
Eerious problem in their decoder by using this file.

ccording to IS0 10646-1:2000, sections D.? and 2.3c, a device
eceiving UTF-8 shall interpret a "malformed sequence in the same way
hat it interprets a character that is outside the adopted subset"” and
‘characters that are not within the adopted subset shall be indicated
o the user” by a receiving device. A quite commonly used approach in
TF-8 decoders is to replace any malformed UTF-8 sequence by a
eplacement character (U+FFFD), which looks a bit like an inverted
uestion mark, or a similar symbol. It might be a good idea to
isually distinguish a malformed UTF-8 sequence from a correctly
encoded Unicode character that is just not available in the current
font but otherwise fully legal, even though IS0 10646-1 doesn’t
andate this. In any case, just ignoring malformed sequences or
mavailable characters does not conform to IS0 10646, will make
ebugging more difficult, and can lead to user confusion.

leaze check, whether a malformed UTF-8 sequence is (1) represented at
11, (2) represented by exactly one single replacement character (or
pguivalent signal), and (3) the following guotation mark after an
illegal UTF—8 sequence is correctly displayed, i.e. proper

? 8

18

Emergency Boot Kit User Guide

Edit Files
3. How to

3.7. Delete, copy or move a text range

Move the cursor to position which is intended to be a
start of inserted text, and then press Ctrl+V or
Shift+Insert to insert text from clipboard.

Screenshot is taken before text insertion from the
clipboard.

Thisz test file can help you examine, how your UTF-8 decoder handles
arious types of correct, malformed, or otherwise interesting UTF-8
sequences. This file is not meant to be a conformance test. It does
not prescribes any particular outcome and therefore there is no way to
"pass"” or “"fail” this test file, even though the texts suggests a
preferable decoder behaviour at some places. The aim is instead to
help you think about and test the behaviour of your UTF-8 on a
cystematic collection of unusual inputs. Experience so far suggests
hat most first-time authors of UTF-8 decoders find at least one
cerious problem in their decoder by using this file.

The test lines below cover boundary conditioms, malformed UTF-8
sequences as well as correctly encoded UTF-8 sequences of Unicode code
points that should never occur in a correct UTF-8 file.

ficcording to IS0 10646-1:2000, sections D.7 and 2.3c, a device
receiving UTF—8 shall interpret a “malformed sequence in the same way
hat it interprets a character that is outside the adopted subset” and
"characters that are not within the adopted subset shall be indicated
o the user” by a receiving device. A quite commonly used approach in
TF-8 decoders is to replace any malformed UTF-8 sequence by a
replacement character (U+FFFD), which looks a bit like an inverted
uestion mark, or a similar symbol. It might be a good idea to
isually distinguish a malformed UTF-8 sequence from a correctly
encoded Unicode character that is just not available in the current
font but otherwise fully legal, even though IS0 10646-1 doesn’t
andate this. In any case, just ignoring malformed sequences or
mavailable characters does not conform to ISD 10646, will make
ebugging more difficult, and can lead to user confusion.

gemse check, whether a malformed UTF-8 sequence iz (1) represented at
1, (2) represented by exactly one =single replacement character (or

equivalent signall, and (3) the following quotation mark after an

illegal UTF-8 sequence is correctly displayed, i.e. proper

1 2 3 4 5 6 7 8 9

19

Emergency Boot Kit User Guide

Edit Files
3. How to

3.7. Delete, copy or move a text range

Screenshot is taken after text insertion from the
clipboard.

This test file can help you examine, how your UTF-8 decoder handles
arious types of correct, malformed, or otherwise interesting UTF-8
cequences. This file is not meant to be a conformance test. It does
not prescribes any particular outcome and therefore there is no way to
"pass" or “"fail"” this test file, even though the texts suggests a
preferable decoder behaviour at some places. The aim iz instead to
help you think about and test the behaviour of your UTF-8 on a
systematic collection of unusual inputs. Experience so far suggests
hat most first—time authors of UTF-8 decoders find at least one
cerious problem in their decoder by using this file.

he test lines below cover boundary conditions, malformed UTF-8
Eequences as well as correctly encoded UTF-8 sequences of Unicode code
oints that should never occur in a correct UTF-8 file.

ficcording to IS0 10646-1:2000, sections D.7 and 2.3c, a device
receiving UTF-8 shall interpret a "malformed sequence in the same way
hat it interprets a character that is outside the adopted subset" and
"characters that are not within the adopted subset shall be indicated
o the user” by a receiving device. A quite commonly used approach in
TF-8 decoders is to replace any malformed UTF-8 sequence by a
replacement character (U+FFFD), which looks a bit like an inverted
uestion mark, or a similar symbol. It might be a good idea to
isually distinguish a malformed UTF-8 sequence from a correctly
encoded Unicode character that is just not available in the current
font but otherwise fully legal, even though 150 10646-1 doesn’t
andate this. In any case, just ignoring malformed segquences or
mavailable characters does not conform to ISD 10646, will make
ebugging more difficult, and can lead to user confusion.

he test lines below cover boundary conditions, malformed UTF-8
Eequences as well as correctly encoded UTF-8 sequences of Unicode code
oints that should never occur in a correct UTF-8 file.

lease check, whether a malformed UTF-8 sequence is (1) represented at
2 3 4 5 6 7 8 9

10

20

Emergency Boot Kit User Guide

Edit Files
3. How to

3.7. Delete, copy or move a text range

Move text range

Before text range can be moved, it must be selected
(see above).

After text range is selected, press Ctrl+X or
Shift+Delete to move it to the clipboard.

Although a selected text range is instanly removed
from the edited text, its copy is retained in the
clipboard.

This test file can help you examine, how your UTF-8 decoder handles
arious types of correct, malformed, or otherwise interesting UTF-8
cequences. This file is not meant to be a conformance test. It does
not prescribes any particular outcome and therefore there iz no way to
"pass" or “"fail"” this test file, even though the texts suggests a
preferable decoder behaviour at some places. The aim iz instead to
help you think about and test the behaviour of your UTF-8 on a
systematic collection of unusual inputs. Experience so far suggests
hat most first-time authors of UTF-8 decoders find at least one
cerious problem in their decoder by using this file.

ficcording to IS0 10646-1:2000, sections D.7 and 2.3c, a device
receiving UTF-8 shall interpret a "malformed sequence in the same way
hat it interprets a character that is outside the adopted subset" and
"characters that are not within the adopted subset shall be indicated
o the user” by a receiving device. A gquite commonly used approach in
TF-8 decoders is to replace any malformed UTF-8 sequence by a
replacement character (U+FFFD), which looks a bit like an inverted
uestion mark, or a similar symbol. It might be a good idea to
isually distinguish a malformed UTF-8 sequence from a correctly
encoded Unicode character that is just not available in the current
font but otherwise fully legal, even though IS0 10646-1 doesn’t
andate this. In any case, just ignoring malformed segquences or
mavailable characters does not conform to IS0 10646, will make
ebugging more difficult, and can lead to user confusion.

Please check, whether a malformed UTF-8 sequence is (1) represented at
11, (2) represented by exactly one single replacement character (or
equivalent signal), and (3) the following gquotation mark after an
illegal UTF-8 sequence is correctly displayed, i.e. proper
resynchronization takes place immageately after any malformed
<equence. This file says "THE END" in the last line, so if you don’t
see that, your decoder crashed somehow before, which should always be
ause for concern.
2 3

21

Emergency Boot Kit User Guide

Edit Files
3. How to

3.7. Delete, copy or move a text range

Move the cursor to position which is intended to be a
start of inserted text, and then press Ctrl+V or
Shift+insert.

Screenshot is taken before text insertion from the
clipboard.

This test file can help you examine, how your UTF-8 decoder handles
arious types of correct, malformed, or otherwise interesting UTF-8
cequences. This file is not meant to be a conformance test. It does
not prescribes any particular outcome and therefore there iz no way to
"pass" or “"fail"” this test file, even though the texts suggests a
preferable decoder behaviour at some places. The aim iz instead to
help you think about and test the behaviour of your UTF-8 on a
systematic collection of unusual inputs. Experience so far suggests
hat most first-time authors of UTF-8 decoders find at least one
cerious problem in their decoder by using this file.

ficcording to IS0 10646-1:2000, sections D.7 and 2.3c, a device
receiving UTF-8 shall interpret a "malformed sequence in the same way
hat it interprets a character that is outside the adopted subset" and
"characters that are not within the adopted subset shall be indicated
o the user” by a receiving device. A gquite commonly used approach in
TF-8 decoders is to replace any malformed UTF-8 sequence by a
replacement character (U+FFFD), which looks a bit like an inverted
uestion mark, or a similar symbol. It might be a good idea to
isually distinguish a malformed UTF-8 sequence from a correctly
encoded Unicode character that is just not available in the current
font but otherwise fully legal, even though IS0 10646-1 doesn’t
andate this. In any case, just ignoring malformed segquences or
mavailable characters does not conform to IS0 10646, will make
ebugging more difficult, and can lead to user confusion.

P lease check, whether a malformed UTF-8 sequence is (1) represented at

1, (2) represented by exactly one single replacement character (or
equivalent signal), and (3) the following gquotation mark after an
illegal UTF-8 sequence is correctly displayed, i.e. proper

ause for concern.
2 3

22

Emergency Boot Kit User Guide

Edit Files
3. How to

3.7. Delete, copy or move a text range

Screenshot is taken after text insertion from the
clipboard.

This test file can help you examine, how your UTF-8 decoder handles
arious types of correct, malformed, or otherwise interesting UTF-8
cequences. This file is not meant to be a conformance test. It does
not prescribes any particular outcome and therefore there iz no way to
"pass" or “"fail"” this test file, even though the texts suggests a
preferable decoder behaviour at some places. The aim iz instead to
help you think about and test the behaviour of your UTF-8 on a
systematic collection of unusual inputs. Experience so far suggests
hat most first-time authors of UTF-8 decoders find at least one
cerious problem in their decoder by using this file.

ficcording to IS0 10646-1:2000, sections D.7 and 2.3c, a device
receiving UTF-8 shall interpret a "malformed sequence in the same way
hat it interprets a character that is outside the adopted subset" and
"characters that are not within the adopted subset shall be indicated
o the user” by a receiving device. A gquite commonly used approach in
TF-8 decoders is to replace any malformed UTF-8 sequence by a
replacement character (U+FFFD), which looks a bit like an inverted
uestion mark, or a similar symbol. It might be a good idea to
isually distinguish a malformed UTF-8 sequence from a correctly
encoded Unicode character that is just not available in the current
font but otherwise fully legal, even though IS0 10646-1 doesn’t
andate this. In any case, just ignoring malformed segquences or
mavailable characters does not conform to IS0 10646, will make
ebugging more difficult, and can lead to user confusion.

The test lines below cover boundary conditions, malformed UTF-8
Eequences as well as correctly encoded UTF-8 sequences of Unicode code
oints that should never occur in a correct UTF-8 file.

Please check, uhether a malformed UTF-8 sequence is (1) represented at
11, (2) represented by exactly one =single replacement character (or
equivalent signall, and (3) the following quotation mark after an
illegal UTF-8 sequence is correctly displayed, i.e. proper

1 2 3 4 5 6 7 8 9

23

Emergency Boot Kit User Guide

Edit Files

3. How to

3.7. Delete, copy or move a rectangular block

3.7. Delete, copy or move a rectangular block

Rectangular block is a set of substrings of multiple adjacent strings, cut in such way that starting and ending positions of all substrings are the same.

Rectangular block Not a rectangular block
05 = : ENQUIRY 05 =
06 = : ACKNOWLEDGE
07 = : BELL : BELL
08 = : BACKSPACE 08 = U+0008 : BACKSPACE

Before rectangular block can be deleted, copied or moved, it must be selected.

24

Emergency Boot Kit User Guide

Edit Files

3. How to

3.7. Delete, copy or move a rectangular block

Select a rectangular block

To select a rectangular block, use following keys:

Operation Key
Select rectangular block upward from the cursor position Alt+Shift+1
Select rectangular block downward from the cursor position Alt+Shift+|
Select rectangular block leftward from the cursor position Alt+Shift+—
Select rectangular block rightward from the cursor position Alt+Shift+—
Select rectangular block from the cursor to the start of current line | Alt+Shift+Home
Select rectangular block from the cursor to the end of current line | Alt+Shift+End
Select rectangular block from the cursor to the start of file Alt+Ctrl+Shift+Home
Select rectangular block from the cursor to the end of file Alt+Ctrl+Shift+End

25

Emergency Boot Kit User Guide

Edit Files

3. How to

3.7. Delete, copy or move a rectangular block

Here is an example of selected rectangular block.

1 Some correct UTF-8 text

You should see the Greek word ’kosme’ : "kaope"

Boundary condition test cases

First possible sequence of a certain length

Last possible sequence of

Other boundary conditions

U-0000D7?FF
U-0000EQOO
U-0000FFFD
U-0010FFFF
U-00110000

byte

bytes
bytes
bytes
bytes
bytes

(U-00000000) :
(U-00000080) :
(U-00000800) :
(U-00010000) :
(U-00200000) :
(U-04000000) :

(U-0000007F) :
(U-000007FF) :
(U-0000FFFF) :
(U-001FFFFF):
(U-03FFFFFF):
(U-?FFFFFFF):

ed If bf

ef bf bd
f4 8f bf
f4 90 80

Malformed sequences

.1 Unexpected continuation

2

3 4

ee 80 B0 =

a certain length

"I:IEL"

26

Emergency Boot Kit User Guide
Edit Files
3. How to

3.7. Delete, copy or move a rectangular block

Delete rectangular block

To delete rectangular block, select it (see above) and

press Ctri+D.

Screenshot shows former location of deleted

rectangular block.

1 Some correct UTF-8 text

You should see the Greek word ’kosme’ : "kaope"

Boundary condition test cases

First possible sequence of a certain length

byte

bytes
bytes
bytes
bytes
bytes

(U-00000000) :
(U-00000080) :
(U-00000800) :
(U-00010000) :
(U-00200000) :
(U-04000000) :

Last possible sequence

of a certain length

.1
ol
03]
.4
oD
.b

(U-0000007F) :
(U-000007FF) :
(U-0000FFFF) :
(U-001FFFFF) :
(U-03FFFFFF) :
(U-?FFFFFFF) :

Other boundary

U-0000D7?FF
U-0000EQOO
U-0000FFFD
U-0010FFFF
U-00110000

2 3

"I:IEL"

conditions

ed 9f bf
ee 80 B0 =
ef bf hd
f4 Bf bf
f4 90 B8O

Malformed sequences

.1 Unexpected continuation

4

27

Emergency Boot Kit User Guide

Edit Files

3. How to

3.7. Delete, copy or move a rectangular block

Copy rectangular block

Before rectangular block can be copied, it must be
selected (see above).

After rectangular block is selected, press Ctrl+C or
Ctri+Insert to copy it to the clipboard.

1 Some correct UTF-8 text

You should see the Greek word ’kosme’ : "kaope"

Boundary condition test cases

First possible sequence of a certain length

Last possible sequence of

Other boundary conditions

U-0000D7?FF
U-0000EQOO
U-0000FFFD
U-0010FFFF
U-00110000

byte

bytes
bytes
bytes
bytes
bytes

(U-00000000) :
(U-00000080) :
(U-00000800) :
(U-00010000) :
(U-00200000) :
(U-04000000) :

(U-0000007F) :
(U-000007FF) :
(U-0000FFFF) :
(U-001FFFFF):
(U-03FFFFFF):
(U-?FFFFFFF):

ed If bf

ef bf bd
f4 8f bf
f4 90 80

Malformed sequences

.1 Unexpected continuation

2

3 4

ee 80 B0 =

a certain length

"I:IEL"

28

Emergency Boot Kit User Guide

Edit Files

3. How to

3.7. Delete, copy or move a rectangular block

Move the cursor to position which is intended to be a
start of inserted rectangular block, and then press
Ctrl+V or Shift+Insert key to insert rectangular block
from the clipboard.

Screenshot is taken before insertion of rectangular
block from clipboard.

1 Some correct UTF-8 text

You should see the Greek word *kosme’ :

Boundary condition test cases

L1} 4 L1
KOTPE

First possible sequence of a certain length

Last possible sequence of

Other boundary conditions

U-0000D7?FF
U-0000EQOO
U-0000FFFD
U-0010FFFF
U-00110000

byte

bytes
bytes
bytes
bytes
bytes

byte

bytes
bytes
bytes
bytes
bytes

(U-00000000) :
(U-00000080) :
(U-00000800) :
(U-00010000) :
(U-00200000) :
(U-04000000) :

(U-0000007F) :
(U-000007FF) :
(U-0000FFFF) :
(U-001FFFFF):
(U-03FFFFFF):
(U-?FFFFFFF):

ed If bf

ef bf bd
f4 8f bf
f4 90 80

Malformed sequences

.1 Unexpected continuation

2

3 4

ee 80 B0 =

a certain length

O

"I:IEL"

29

Emergency Boot Kit User Guide
Edit Files
3. How to

3.7. Delete, copy or move a rectangular block

Screenshot is taken before insertion of rectangular
block from the clipboard.

1 Some correct UTF-8 text

You should see the Greek word ’kosme’ : "kaope"

Boundary condition test cases

First possible sequence of a certain length

byte

bytes
bytes
bytes
bytes
bytes

(U-00000000) : g
(U-00000080) :
(U-00000800) :
(U-00010000) :
(U-00200000) :
(U-04000000) :

Last possible sequence of a certain length

"I:IEL"

(U-03FFFFFF) :
(U-7FFFFFFF) -

Other boundary conditions

U-0000D7?FF
U-0000EQOO
U-0000FFFD
U-0010FFFF
U-00110000

ed 9f bf
ee 80 B0 =
ef bf hd
f4 Bf bf
f4 90 B8O

Malformed sequences

.1 Unexpected continuation

2

3 4

30

Emergency Boot Kit User Guide
Edit Files
3. How to

3.7. Delete, copy or move a rectangular block

Move rectangular block

Before rectangular block can be moved, it must be
selected (see above).

After rectangular block is selected, press Ctrl+X or
Shift+Delete to move it to the clipboard.

Although selected rectangular block is instantly
removed from the edited text, its copy is retained in
the clipboard.

1 Some correct UTF-8 text

You should see the Greek word ’kosme’ : "kaope"

Boundary condition test cases

First possible sequence of a certain length

byte

bytes
bytes
bytes
bytes
bytes

(U-00000000) :
(U-00000080) :
(U-00000800) :
(U-00010000) :
(U-00200000) :
(U-04000000) :

.1
ol
03]
.4
oD
.b

(U-0000007F) :
(U-000007FF) :
(U-0000FFFF) :
(U-001FFFFF) :
(U-03FFFFFF) :
(U-?FFFFFFF) :

Other boundary

U-0000D7?FF
U-0000EQOO
U-0000FFFD
U-0010FFFF
U-00110000

Last possible sequence of a certain length

"I:IEL"

llll
(1}

conditions

ed 9f bf
ee 80 80O
ef bf hd
f4 Bf bf
f4 90 B8O

== — o I VR |
(=]

Malformed sequences

.1 Unexpected continuwation bytes

2 3

4 5

31

Emergency Boot Kit User Guide

Edit Files

3. How to

3.7. Delete, copy or move a rectangular block

Move the cursor to position which is intended to be a
start of inserted rectangular block, and then press
Ctrl+V or Shift+Insert key to insert rectangular block
from the clipboard.

Screenshot is taken before insertion of rectangular
block from the clipboard.

1 Some correct UTF-8 text

You should see the Greek word *kosme’ :

Boundary condition test cases

First possible sequence of a certain length

byte

bytes
bytes
bytes
bytes
bytes

(U-00000000) :
(U-00000080) :
(U-00000800) :
(U-00010000) :
(U-00200000) :
(U-04000000) :

Last possible sequence

of a certain length

L1} 4 L1
KOTPE

(U-0000007F) :
(U-000007FF) :
(U-0000FFFF) :
(U-001FFFFF) :
(U-03FFFFFF) :
(U-?FFFFFFF) :

Other boundary

U-0000D7?FF
U-0000EQOO
U-0000FFFD
U-0010FFFF
U-00110000

2 3

conditions

ed 9f bf
ee 80 B0 =
ef bf hd
f4 Bf bf
f4 90 B8O

Malformed sequences

.1 Unexpected continuation

4

32

Emergency Boot Kit User Guide
Edit Files
3. How to

3.7. Delete, copy or move a rectangular block

Screenshot is taken after insertion of rectangular
block from the clipboard.

You should see the Greek word *kosme’ :

1 Some correct UTF-8 text

L1} 4 L1
KOTPE

Boundary condition test cases

First possible sequence of a certain length

byte

bytes
bytes
bytes
bytes
bytes

(U-00000000) :
(U-00000080) :
(U-00000800) :
(U-00010000) :
(U-00200000) :
(U-04000000) :

Last possible sequence

.1
ol
03]
.4
oD
.b

(U-0000007F) :
(U-000007FF) :
(U-0000FFFF) :
(U-001FFFFF) :
(U-03FFFFFF) :
(U-?FFFFFFF) :

Other boundary

U-0000D7?FF
U-0000EQOO
U-0000FFFD
U-0010FFFF
U-00110000

conditions

ed 9f bf
ee 80 B0 =
ef bf hd
f4 Bf bf
f4 90 B8O

Malformed sequences

.1 Unexpected continuation

2 3

4

33

